Separation of Hepatic Iron and Fat by Dual-Source Dual-Energy Computed Tomography Based on Material Decomposition: An Animal Study

نویسندگان

  • Jing Ma
  • Zhi-Qiang Song
  • Fu-Hua Yan
چکیده

OBJECTIVE To explore the feasibility of dual-source dual-energy computed tomography (DSDECT) for hepatic iron and fat separation in vivo. MATERIALS AND METHODS All of the procedures in this study were approved by the Research Animal Resource Center of Shanghai Ruijin Hospital. Sixty rats that underwent DECT scanning were divided into the normal group, fatty liver group, liver iron group, and coexisting liver iron and fat group, according to Prussian blue and HE staining. The data for each group were reconstructed and post-processed by an iron-specific, three-material decomposition algorithm. The iron enhancement value and the virtual non-iron contrast value, which indicated overloaded liver iron and residual liver tissue, respectively, were measured. Spearman's correlation and one-way analysis of variance (ANOVA) were performed, respectively, to analyze statistically the correlations with the histopathological results and differences among groups. RESULTS The iron enhancement values were positively correlated with the iron pathology grading (r = 0.729, p<0.001). Virtual non-iron contrast (VNC) values were negatively correlated with the fat pathology grading (r = -0.642,p<0.0001). Different groups showed significantly different iron enhancement values and VNC values (F = 25.308,p<0.001; F = 10.911, p<0.001, respectively). Among the groups, significant differences in iron enhancement values were only observed between the iron-present and iron-absent groups, and differences in VNC values were only observed between the fat-present and fat-absent groups. CONCLUSION Separation of hepatic iron and fat by dual energy material decomposition in vivo was feasible, even when they coexisted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography

Introduction SPECT projections are contaminated by scatter radiation, resulting in reduced image contrast and quantitative errors. Backscatter constitutes a major part of the scatter contamination in lower energy windows. The current study is an evaluation of the effect of backscatter material on FWHM and image quality investigated by Monte Carlo simulation. Materials and Methods SIMIND program...

متن کامل

Clinical applications of virtual, non-contrast head images derived from dual-source, dual-energy cerebrovascular computed tomography angiography

Background: This study set out to evaluate the utility of cerebrovascular virtual non-contrast (VNC) scans. Materials and Methods: Conventional non-contrast (CNC) and dual-energy computed tomography angiography (DE-CTA) head scans were conducted on 100 subjects, of which 46 were normal, 15 had parenchymal hematomas of the brain, 13 had ischemic infarction, 22 had tumors, and 4 had calcified les...

متن کامل

Quantification of liver fat in the presence of iron and iodine: an ex-vivo dual-energy CT study.

PURPOSE Iodinated contrast media (CM) and iron in the liver are known to hinder an accurate quantification of liver fat content (LFC) with single-energy computed tomography (SECT). The purpose of this study was to evaluate the feasibility and accuracy of dual-energy CT (DECT) for ex vivo quantification of LFC, in the presence of iron and CM, compared with SECT. MATERIALS AND METHODS Sixteen p...

متن کامل

Advanced Multi Material Decomposition of Dual Energy in Computed Tomography Image

The Research about Advanced Multi Material Decomposition of Dual energy in Computed Tomography image to find the liver diseases. The Existing system Multi material Decomposition(MMD) to find the liver disease using single energy. It was use Virtual Unenhancement algorithm. which is digitally removal of the effect of contrast agents from contrast-enhanced dual-energy CT exams. In proposed Method...

متن کامل

Reversal Trend of Hounsfield Unit Values of Substances with High and Low Effective Atomic Numbers

Introduction: In dual-energy computed tomography (DECT), the Hounsfield values of a substance measured at two different energies are the basic data for finding the chemical properties of a substance. The trends of Hounsfield unit (HU) alterations following the changes in energy are different between the materials with high and low Zeff. The present study aim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014